Reversal of reserpine effects of compounds $\mathbf{1}, 8$, and 9 were tested. Reserpine ($2 \check{0} \mathrm{mg} / \mathrm{kg}$) was injected subcntaneously t_{1}, gronps of mice (five per group); 3 hr later the compounds were injected intraperitoneally in doses of 10,20 , and $30 \mathrm{mg} / \mathrm{kg}$. Controk were injected with DL-amphetanine (20 mg kg ip) which cansed complete reserpine reversal, i.e., aronsal from sedated state and cessation of ptosis. This reversal lasted for at least 3 hr and after that period the animals again returned to the sedated state. Compound 9 ($20 \mathrm{mg}, \mathrm{kg}$) showed a very slight, delayed, ind shortlasting reserpine reversal.
Autagonistic action to pressor activity of epinephrine was tested as follows. Epinephrine ($1-2 \mu \mathrm{~g} / \mathrm{kg}$) was adninistered th, cats ($2.5-3.5 \mathrm{~kg}$) and when the blood pressire returned to control level the test substance was administered. Five minntes later cpinephrine was injected and the effects were compared.
Gross behavioral changes were conducted on mice. substancewere administered intraperitoneally into groups of five animnls for each dose level and changes were noted. Observations wore made for not more than 24 hr after injection.

Antibacterial Tests.--Compound 1 was tested for antibacterisl activity on the following bacteria and fungi: Staphylococcus whens 209P (Oxford), S. aureus 183, Bacillus cereus, B. cerens I, Escherichia coli W, E. coli WI, E. $\mathrm{O}_{m_{1}} \mathrm{~B}_{4} \mathrm{H}_{4,}, E$. coli $\mathrm{O}_{1,} \mathrm{~B}_{2} \mathrm{H}_{6,}$ Salmonella typhimutium, Shigella fexneri 4b 5419. Canduda albicans, and Cryptoconous meoformans A. The bacteria and the fingi $\left(1 \times 10^{4}\right.$ and 1×10^{2}) were added in drops $(0.02 \mathrm{ml}) \mathrm{t}_{1}$ Petri dishee containing the growth media, connosed of Agar 8 (containing peptone, yeast extract, beef extract, dextrose, and buffer pH 7) or Saborand agar and 0.4 a yeast extrurt. Contwol experiments were carried ont wherein the bacteria or the fungi were grown in the absence of the empound investigated. Phenethylanine hydrochloride did not inhibit growth at concentrai ions of $1000 \mu \mathrm{~g} / \mathrm{ml}$, while 1 inhibited growt hof the ahove bacteris at $500 \mu \mathrm{~g} / \mathrm{ml}$, of C. neoformans A at $1000 \mu \mathrm{~g}$ ml, and of C, albicons at $500 \mu \mathrm{~g} / \mathrm{ml}\left(10^{4}\right)$ and $1000 \mu \mathrm{~g} / \mathrm{ml}\left(10^{6}\right.$).
Compound 10 was tested for antibacterial activity in the above growth nedia and on addition of ate chuman meep blond the the growth medis. The results are smmmarized in Table IV. It is seen that 10 inhibited most of the bacterin tested at a concentration of $100 \mu \mathrm{~g}$ nil, but in the presence of blood the activity was lower. Componnd 10 did not inlibit the growth of \therefore a abican. shad C. neoformans A at concentrations of 100 on $200 \mu \mathrm{~g}$, mul.

Acknowledgment.-We wish to thank Dr: H. Edery and I)r. Y. Grunfeld of the Israel Institute for Bi-

Thinis IV
A. rinlactermal ACTMLY" 川
 ITymborlbunthe 10

 hanod wis hatel.
ological Research, Ness-Ziona, and the Phamacologieal Institute of the National Council for Research and Development for carrying out the pharmacological tests. Likewise, our thanks inte due to Dr. M. Aharonson and his staff at the Istacl Institute for Biological Research, Ness-Ziona, for carring out the bacteriological tests. This research was partly supported by "Yisum" " Rexemela Development (o.

A Conformational Study of β-Phenethanolamine Receptor Sites. I. The Syntheses of the 3-Amino-2-phenyl-trans-2-decalols ${ }^{1}$

Edward E. SmbsmaN avd Willan H. (rastrock ${ }^{2}$

Recemed Ortobor $26,15 \% F^{7}$
lierined Munuscript Recemed Febinary 10, 1:*is

Abstract

 ergic α-receptor site stimulation are recorded.

In tuy biologically active agent which possesses moro than one type of action or which is metabolized by more than one pathway, the possibility exists that the approach and binding to a receptor site will require or favor a specific conformation for each effector site. metabolic site, transport, etc. The first attempt to

[^0]illustrate this postulate involved the use of analogs of acetylcholine in the decalin system and was successful. ${ }^{1}$ The application of a similar system to the β-phene hanolamines involves somewhat more complex chemistry but a similar approach.
LaPidun :und coworkers have demonstrated that a steric relationship cxists among the enantiomorphs of ephedrine and ψ-cphedrine with regard to agonist and

[^1]antagonist action. Their observations have been made on nonrigid systems and thus no conclusions can be reached concerning conformational preference. It was the goal of the initial work in these laboratories to prepare rigid analogs of ephedrine and ψ-ephedrine which have fixed conformations. Compounds 1 and 3 represent two conformers of erythro configuration and compounds 2 and 4 represent conformers of threo configuration.

t

3

2

4

The synthesis of the four conformationally rigid systems 1, 2, 3, and 4 involved the use of the common intermediate 2-phenyl- Δ^{2}-trans-octalin (6). The latter was prepared from commercially available trans-2decalol which was oxidized to trans-2-decalone. This ketone could be converted to the carbinol 5 by treatment with either phenylmagnesium bromide or phenyllithium and then to the desired $\mathbf{6}$ by dehydration (eq 1).

Compound 1, 3(a)-amino-2(e)-phenyl-trans-2(a)-decalol, was prepared by the conversion of the olefin 6 to 2 (e)-phenyl-trans-decalin 2,3-oxide (8) by treatment with m-chloroperbenzoic acid or in better yields by initial treatment with N-bromosuccinimide in aqueous dioxane to form the bromohydrin 7 which could be converted to the epoxide by treatment with sodium carbonate (eq 2). The epoxide 8, on treatment with

liquid ammonia under pressure, afforded the desired 1 . The nmr spectrum of 1 showed a multiplet at $\delta 3.10$ ($W_{1 / 2}=6 \mathrm{cps}$), which is consistent with an equatorial methine proton at C-3 coupling with two methylene protons at C-4 ($\left.J_{\text {ae }}=J_{\text {ee }}=2-4 \mathrm{cps}\right)$.

An alternate pathway to 1 involved the procedure of Bordwell and Garbisch. ${ }^{\circ}$ The olefin 6 was treated with acetic anhydride and 70% nitric acid to yield 3(a)-nitro-2(e)-phenyl-trans-2(a)-decalol acetate along with an olefinic nitro material. The former compound could be hydrolyzed and reduced to the desired 1; however, this procedure was inferior to the epoxide opening method.

The epoxide 8, under conditions similar to those utilized by Berti, Macchia, and Macchia, ${ }^{6}$ could be niade to yield 2(a)-phenyl-trans-decalin-2(e), 3(e)-diol (9), 2(e)-phenyl-trans-decalin-2(a),3(a)-diol (10), or 2(e)-phenyl-trans-decalin-2(a),3(e)-diol (11) (eq 3).

The nmr spectrum of 9 showed methine absorption at $\delta 3.75$ (quartet, $J_{\mathrm{aa}}=11 \mathrm{cps}, J_{\mathrm{ae}}=5 \mathrm{cps}$). The coupling constants correspond to one axial-axial coupling ($10-12 \mathrm{cps}$) and one axial-equatorial coupling ($2-4 \mathrm{cps}$) showing that the methine proton is axial. An interesting pattern was observed in the $n m r$ spectrum of $\mathbf{9}$ in the aromatic region. It was found that the aromatic protons were separated into two multiplets at δ 7.75 and 7.35 ; the downfield signal integrated for two protons and the upfield signal integrated for three protons. This type of aromatic absorption had not been observed in any of the previously mentioned compounds, which either exhibited a broad singlet or a multiplet. There is obviously a deshielding effect on the ortho protons of the axial aromatic ring.

The nmr spectrum of 10 showed methine proton absorption at $\delta 3.68$. The peak half-width (7 cps) indicated that the proton at C-3 was equatorial, the peak resulting from one axial-equatorial interaction (2-4 cps) and one equatorial-equatorial interaction (2-4 cps).

The nmr spectrum of 11 showed methine proton absorption at $\delta 3.99$ ($W_{1 / 2}=19 \mathrm{cps}$). The peak halfwidth corresponds to one axial-axial coupling (10-12 cps) and one axial-equatorial coupling ($2-4 \mathrm{cps}$) indicating the methine proton to be axial. The aromatic protons appear as a multiplet at $\delta 7.40$.

The second conformational analog, 3(a)-amino-2(a)-phenyl-trans-2(e)-decalol (2), was prepared from 2(a)-phenyl-trans-decalin-2(e),3(e)-diol 3-tosylate (12) by allowing this compound to react with ammonia under pressure. The tosylate 12 was prepared from the diol 9 by treatment with p-toluenesulfonyl chloride (eq 4).

12
The nmr spectrum exhibited methine absorption at $\delta 3.83\left(W_{1 / 2}=6 \mathrm{cps}\right)$. The peak half-width is consistent with one equatorial-equatorial coupling ($2-4 \mathrm{cps}$) and one axial-equatorial coupling ($2-4 \mathrm{cps}$), indicating that the methine proton at $\mathrm{C}-3$ is equatorial.

3(e)-Animo-2(il)-plemyl-tıans-2(c)-decalol (3) was ob tained by the oxidation of the diol 9 to $3(e)$-hydroxy- $3-$ (a)-phenyl-trans-2-decalone 13, convervion to the oxime 14, and catalytic reduction (eq 5). This reduetion was

Atoreoselective and no axial amino function was defected. The $1 m m$ spectrum exhibited methine absorption at $\delta 3.00\left(W_{1}=19 \mathrm{cps}\right)$ and two multiplets for the aromatie protons at $\delta 7.70$ and 7.34 . The peak halfwidth corresponds to one axial axial coupling ($10-12$ (ps) and one axial equatorial coupling (24 cps), indieating that the methine proton at (-3 is axial. The aromatic absorption is the same as that observed for the tians diequatorial glyool (9), therefore the equatorial hydroxyl or amine grouping at C-3 has a deshielding effect on the ortho protons of the axial phenyl group.

Compound 4, 3(e)-amino-2(e)-phenyl-tians-2(a)-deealol, was prepared by the oxidation of the diol 10 to 3(a)-hydroxy-3(e)-phenyl-tians-2-decalone (15) and catalytic reduction in the presence of ammonia (eq 6).

15
Attempts to prepare a crystalline oxime of the ketone 15 failed; however. the above reduction gave only the equatorial amino function. Jn the nmr spectrum of 4 there was no visible absorption for the methine proton at $\mathrm{C}-3$, therefore it was apparently obscured by ring absorption ($\delta 1.0-2.0$). The methine proton was observed to shift when trifluoroncetic acid was added, the mothine proton appearing at δ 3.5.) $\left(W_{5}=10\right.$ (pr). The position of the mothine proton could not be assigned solely on the basis of the peak half-width, but comparison with the three other isomeric amino aleohols $(\mathbf{1}, \mathbf{2}, \mathbf{3})$ indicates the structure of the product to be 4 .

The four compounds 14 were submitted for testing in the vas deferens preparation reported by Patil, l.al'idus, and Tye.' With all of the dl pairs at concentrations of 3×10^{-4} and $1 \times 10^{-4} M$ the response was (quivalent to norepinephrine in concentrations of $\therefore \times 10^{-6}$ and $1 \times 10^{-6} 317$. This com be assumed to be dtue to a mixture of both direct and indirect action with the compounds acting in an monsecife manner to release norepinephrine.

These results will be examined farther by resolving compomeds $1-4$ into their optical antipodes and by utilizing the resolved materials and the $d l$ isomers in a reserpinized vas deferens preparation. ${ }^{8}$

Experimental Section ${ }^{4}$

I'uns-2-Decalone.- Commercially available trans-2-decalol (Koch-I.ight, England) ($100 \mathrm{~g}, 0.6 \overline{5}$ nole) was recrystallized from
 155, 1 (106 0^{-j}.
 (19(iT).
petrolemb (by 60 - 0 : the wold was filtered and washed with cold petrolenm ether $\left(60-70^{\circ}\right)$ affording pme bons-2-decalol in
 U.S:; mole) was indized aceording to the procedne of Nekon' ntilizing Jones reagent to yield 77 g (95\%, 1 of trans-2-decalonc: winnemp $7 \overline{5}$ (1° (lit. ${ }^{13} \mathrm{mpp} 76^{\circ}$).

 Ein(). The smioolid rewide, obtaned following the work-up),
 The mixture was hemed at reflux for 12 hr , hsing a lownotark arap to enllect Hots). The $\mathrm{KHF} \mathrm{H}_{4}$ was removed by fillation and the solvent was evaporated at reduced pressine. The residne

 atoms), (ent in smill pieces, in 400 ml of dry bie() was added
 reflus. The minume was sinted for 4 he after addition wat complete and to the stirred whation trans-2-decalone (107 g , $10 . \bar{i}$ mole) wam added chopwise. The mixtme was stired for l: ha al foom temperamre. lise was aded and the mixbme was exiracted with bitt. The organie phase was washed (5', ITCl.
 femoved by filtation and the solvent was evaporated at reduced pressure. The rewidne was disoolved in 40t) nil of toluene and 1 g of p-tolnenemblfonic acid was added. The solution was hented at reflnx, nsing at tem stark tap to colleen the $\mathrm{H}_{2} \mathrm{O}$. The whene solntion was washed (1f,) and the solvent was removed an redinced presemre. The residue was recryshallized from Me()ll

(ontentration of the mother liquon rieded an wil which exhibited man absorption at $8.5 .97,1^{\circ}=10$ (p) and $5.78\left(\mathrm{H}_{1}=\right.$ 4 (p)s!. The oil wis apparenty a mixnmo of Δ^{\prime} - and Δ^{2}-octalims which conld not be separated by chromatography or distillation.

2(e)-Phenyl-trans-decalin 2,3-Oxide (8), a. m-Chloro-

 0.(0)2 mole) diswolved in 100 ml of (HCl . The reaction was maintanded at 03° (hning the addition and was stimed for 12 hr at rown lemperanme. Leon woling the m-chlowobenzic acid precipitated and was removed by filtration. The filmand
 and samrated Nacle. The organice phase was dried (Mgs 0_{4}). Evaporation of the stlyent al rednced premare gave a semisolid, which was rectustallized fram petrolenm ether (28-30 $)$ affording

 prolonat (-3 , Inol. $\left\{\mathrm{C}_{\mathrm{In}} \mathrm{H}_{20} \mathrm{O}\right)$) C. II.

Chromatography of the filtate om sihea gel therek 0.0.a-0.20 num), ehting with (velohexane- Fiote illo:1), afforded an additional $4.6 \mathrm{~g}\left(399^{\prime}\right.$, of 8 ans two oik which have been henif. tively identified as 2 (0)-phony-trans-decalin-2 (a) : 3 (a)-diol $3-m$ -
 ather.

 was added and the mixame was extaced with reveral portions of Eta(). The organie phase was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ matil nom1:al and

[^2]dried $\left(\mathrm{MgSO}_{4}\right)$. The $\mathrm{Et}_{2} \mathrm{O}$ was evaporated at reduced pressure to yield 38 g of crude bromohydrin; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right), \delta 4.24\left(\mathrm{~W}_{1 / 2}=\right.$ 6 cps , equatorial methine proton at $\mathrm{C}-3$). The crude bromohydrin was dissolved in 250 ml of MeOH and a solution of 38 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 250 ml of $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was heated at reflux for 14 hr . The MeOH was evaporated and the resulting solid was removed by filtration and recrystallized from MeOH affording $15.6 \mathrm{~g}(56 \%)$ of (8) $\mathrm{mp} 99-101^{\circ}$.

3(a)-Amino-2(e)-phenyl-trans-2(a)-decalol (1).-Compound 8 ($5.0 \mathrm{~g}, 0.02$ mole) was placed in a steel bomb cooled in Dry Ice$\mathrm{Me}_{2} \mathrm{CO}$ and ca. 100 ml of liquid NH_{3} was added. The bomb was sealed and heated at 180° for 8 hr . After cooling to room temperature, the pressure was released and the bomb was opened. The residue was dissolved in CHCl_{3} and this solution was filtered to remove solid inıpurities. The solvent was evaporated and the resulting solid was recrystallized from petroleum ether ($60-70^{\circ}$) affording $3 \mathrm{~g}(60 \%)$ of 1 : $\mathrm{mp} 148-149^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right), 2.77,2.96$ (w), 3.41, 3.50, 6.25, 6.35, 6.70, 6.91, $10.00,14.40 \mu(\mathrm{w}) ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right), \delta 7.37$ (multiplet, aromatic protons), $3.10\left(W_{1 / 2}=6 \mathrm{cps}\right.$, equatorial methine proton at $\mathrm{C}-3)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3(a)-Nitro-2(e)-phenyl-trans-2(a)-decealol Acetate.-The procedure of Bordwell and Garbisch was followed. To 35 ml of $\mathrm{Ac}_{2} \mathrm{O}$ at room temperature was added $70 \% \mathrm{HNO}_{3}(5.2 \mathrm{~g}, 0.058$ mole) and the mixture was stirred for 15 min . The mixture was cooled to -10° in an ice-salt bath and $6(6.3 \mathrm{~g}, 0.029$ mole) in 20 ml of $\mathrm{Ac}_{2} \mathrm{O}$ and 10 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added, maintaining the temperature 0°. The reaction was stirred for an additional 30 \min at -10° and poured into $\mathrm{H}_{2} \mathrm{O}$. The aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed (5% NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}$, and saturated NaCl). Drying (MgSO_{4}) and removal of the $\mathrm{Et}_{2} \mathrm{O}$ afforded a brown oil. Chromatography on silica gel (Merck $0.05-0.20 \mathrm{~mm}$) afforded an oil and a solid. The oil exhibited ir absorption at $3.30,3.42,3.50,6.10,6.25,6.52$, 6.91, 7.41μ and is most likely olefinic nitro material. The solid was recrystallized from MeOH affording $0.5 \mathrm{~g}(6.0 \%)$ of the desired product: mp $147-148^{\circ}$; ir $\left(\mathrm{CHCl}_{8}\right), 3.30,3.42,3.50,5.73$, $6.48,6.70,6.91,7.33,8.3,9.69,9.9,10.08,11.35 \mu ; \mathrm{nmr}\left(\mathrm{CHCl}_{3}\right)$, $\delta 7.34$ (singlet, aromatic protons), $5.08\left(W_{1 / 2}=7 \mathrm{cps}\right.$, equatorial methine proton at $\mathrm{C}-3$), 2.00 (singlet, $\mathrm{CH}_{3} \mathrm{COO}$). Anal. ($\mathrm{C}_{18} \mathrm{H}_{23}-$ $\left.\mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2(a)-Phenyl-trans-decalin-2(e),3(e)-diol (9). -The procedure $11 s e d$ is similar to that of Berti and coworkers. ${ }^{6}$ To 400 ml of 75% aqueous DMSO was added 10 ml of concentrated $\mathrm{H}_{3} \mathrm{SO}_{4}$ and 8 ($10.0 \mathrm{~g}, 0.044 \mathrm{~mole}$). The mixture was stirred 16 hr at room temperature. Excess $\mathrm{H}_{2} \mathrm{O}$ was added and the resulting solid was removed by filtration and washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The wet solid was dissolved in $E t_{2} \mathrm{O}$, the $\mathrm{Et}_{2} \mathrm{O}$ solution was washed with $\mathrm{H}_{2} \mathrm{O}$, the solution was dried (MgSO_{4}), and the solvent was evaporated. The solid residue was recrystallized from petroleum ether $\left(60-70^{\circ}\right)$ affording $5.6 \mathrm{~g}(52 \%)$ of the desired diol $9: \mathrm{mp}$ $120-130^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right), 2.79,291,3.32,3.42,3.50,6.2 \overline{5}, 6.70,6.90$, $9.70,10.64,14.30 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) . \delta 7.75$ (multiplet, aromatic ortho-protons), 7.30 (multiplet, aromatic meta and para protons), 3.75 (quartet, $J_{\mathrm{aa}}=11 \mathrm{cps}, J_{\mathrm{ae}}=5 \mathrm{cps}$, axial methine at C-3).

Concentration of the filtrate afforded a small amount of impure diol and $2.9 \mathrm{~g}(29 \%$) of 3(e)-phenyl-trans-2-decalone, mp 101$102^{\circ}$.

3(e)-Phenyl-trans-2-decalone.-To 8 (4.0 g, 0.018 mole) in 100 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added 4 g of p-toluenesulfonic acid and the mixture was heated at reflux for 12 hr . The $\mathrm{C}_{6} \mathrm{H}_{6}$ solntion was washed ($5 \% \mathrm{NaHCO}_{3}$ solution, $\mathrm{H}_{2} \mathrm{O}$, and satnrated NaCl) and dried (MgSO_{4}), the solvent was evaporated at rednced pressure, and the resulting solid was recrystallized from petrolenm ether $\left(60-70^{\circ}\right)$ affording $2.55 \mathrm{~g}(64 \%)$ of $3(\mathrm{e})$-phenyl-trans-2-decalone: $\mathrm{mp} 101-102^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right), 3.31,3.40,3.48,5.86,6.24,6.68,6.91$, $8.60,11.60,14.50 \mathrm{~m}: \mathrm{nmr}\left(\mathrm{CCl}_{4}\right), \delta 7.16$ (multiplet, aromatic), 3.50 (quartet, $J_{\mathrm{aa}}=12 \mathrm{cps}, J_{\mathrm{ae}}=6 \mathrm{cps}$, axial methine at C-3). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

Oxime, mp 236-237. . Anal. ($\left.\mathrm{C}_{16} \mathrm{H}_{2}, \mathrm{NO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
2(e)-Phenyl-trans-decalin-2(a),3(a)-diol (10).-The procedure of Berti and coworkers ${ }^{6}$ was followed. Compound 8 (10.0 g , 0.044 mole) was dissolved in 200 ml of 85% aqneons DMSO, and $\mathrm{KOH}(14 \mathrm{~g}, 0.044 \mathrm{~mole})$ was added. The mixture was heated at reflux for 19 hr . Excess $\mathrm{H}_{2} \mathrm{O}$ was added and the resulting solid was removed by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$. The wet solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and the $\mathrm{Et} . \mathrm{O}$) solntion was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. Recrytallization of the solid from petrolenm ether $\left(60-70^{\circ}\right)$ afforded $9.8 \mathrm{~g}(91 \%)$ of colorless needles: mp 118-119 ; ir $\left(\mathrm{CHCl}_{3}\right)$, $2.78,2.90,3.32,3.42,3.51,6.70,6.92,9.64,9.97,10.30,14.30 \mu$:
$\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.40$ (multiplet, aromatic), $3.68\left(W_{1 / 2}=7 \mathrm{cps}\right.$. equatorial methine proton at $\mathrm{C}-3)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.

2(e)-Phenyl-trans-decalin-2(a),3(e)-diol (11).-The procedure used is essentially that of Berti and coworkers. ${ }^{6}$ To anhydrous trichloroacetic acid ($3.3 \mathrm{~g}, 0.02$ mole) in 75 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added $8(2.0 \mathrm{~g}, 0.009 \mathrm{~mole})$ and the solution was stirred for 18 hr at room temperature. The $\mathrm{C}_{6} \mathrm{H}_{6}$ solution was washed $\left(10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ solution, $\mathrm{H}_{2} \mathrm{O}$, and saturated NaCl). The solvent was removed and the residue was dissolved in a solution of 2 g of KOH in 50 ml of EtOH. The mixture was heated at reflux for 2 hr and excess $\mathrm{H}_{2} \mathrm{O}$ was added. The solid was removed by filtration, washed, and dried. Recrystallization from petroleum ether ($60-70^{\circ}$) afforded $0.9 \mathrm{~g}(50 \%)$ of 11: mp 142-143 ${ }^{\circ}$: ir $\left(\mathrm{CHCl}_{3}\right), 2.80$, $2.90,3.32,3.41,3.50,6.25,6.71,6.91,9.65,10.28,10.64,14.30 \mu$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.40$ (multiplet, aromatic protons), $3.99\left(W_{\mathrm{t} / 2}=\right.$ $19 \mathrm{cps}_{\text {, }}$ axial methine proton at $\left.\mathrm{C}-3\right)$. A nal. $\left(\mathrm{C}_{66} \mathrm{H}_{22} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

3(a)-Hydroxy-3(e)-phenyl-trans-2-decalone (15). a. Pfitz-ner-Moffatt Method. ${ }^{14}$-To 10 ($0.85 \mathrm{~g}, 0.0034$ mole) in 5 ml of anhydrous DMSO was added a solution of anhydrous pyridine $(0,27 \mathrm{ml}, 0.0034 \mathrm{~mole})$ and trifluoroacetic acid ($0.14 \mathrm{ml}, 0.0017$ mole) in 5 ml of anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$. Dicyclohexylcarbodiimide ($3.3 \mathrm{~g}, 0.016$ mole) was added and the mixture was allowed to stand for 19 hr . The reaction mixture was diluted with 50 ml of $E t_{2} \mathrm{O}$ and 1.6 g of oxalic acid in 15 ml of MeOH was added. After cessation of gas evolution 50 ml of $\mathrm{H}_{2} \mathrm{O}$ was added and the dicyclohexylurea was removed by filtration. The filtrate was washed $\left(5 \% \mathrm{NaHCO}, \mathrm{H}_{2} \mathrm{O}\right.$, and saturated NaCl$)$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residue was crystallized from petroleum ether $\left(60-70^{\circ}\right)$ affording $0.10 \mathrm{~g}\left(12^{\circ} / \mathrm{c}\right)$ of ketone 15: $\mathrm{mp} \mathrm{167-169}$; ir $\left(\mathrm{CHCl}_{3}\right), 2.80,3.33,3.42,3.40,5.86,6.26$, $6.70,6.92,14.40 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.31$ (singlet, aromatic protons). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
b. Albright-Goldman Method. ${ }^{15}$-To $10(9.8 \mathrm{~g}, 0.04$ mole) was added 50 ml of anhydrous DMSO and 50 ml of $\mathrm{Ac}_{2} \mathrm{O}$ and the mixture was stirred at room temperature for 24 hr . Excess $\mathrm{H}_{2} \mathrm{O}$ was added and the resulting solid was removed by filtration and washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The wet solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, the solution was washed ($\mathrm{H}_{7} \mathrm{O}$, saturated NaCl$)$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. Recrystallization of the residue from CHCl_{3}-petrolenm ether $\left(60-70^{\circ}\right)$ affording $4.85 \mathrm{~g}(49 \%)$ of ketone 15, mp 167-168 ${ }^{\circ}$.
c. N-Bromoacetamide Method. -The procedure nsed is essentially that of Oliveto and coworkers. ${ }^{16}$ Compound 10 ($5.9 \mathrm{~g}, 0.024$ mole) was dissolved in 100 ml of $\mathrm{Me}_{2} \mathrm{CO}$ and 25 ml of $\mathrm{H}_{2} \mathrm{O}$ and the solution was cooled to 3°. A sohtion of N bromoacetamide ($5.0 \mathrm{~g}, 0.032$ mole) in 50 ml of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise maintaining a temperature of 5°. The reaction mixture was kept in a refrigerator for 5 hr and the excess oxidizing agent, was destroyed by adding $20 \% \mathrm{Na}_{2} \mathrm{SO}_{4}$ solntion. Excess $\mathrm{H}_{2} \mathrm{O}$ was added and the precipitate was removed by filtration. Recrystallization from CHCl_{3}-petroleum ether ($60-70^{\circ}$) afforded $3.45 \mathrm{~g}(58 \%)$ of ketone $15, \mathrm{mp} 167-168^{\circ}$.
d. From 2(e)-Phenyl-trans-decalin-2(a),3(e)-diol (11).-Using the procedure of Albright and Goldman, ${ }^{15}$ 2(e)-phenyl-trans$2(\mathrm{a}), 3(\mathrm{e})$-diol (11) ($0.50 \mathrm{~g}, 0.002$ mole) afforded $0.08 \mathrm{~g}(16 \%)$ of the ketone $15, \mathrm{mp} 167-169^{\circ}$.

3(e)-Hydroxy-3(a)-phenyl-trans-2-decalone (14). a. Pfitz-ner-Moffatt Method. ${ }^{14}$-Utilizing this approach 9 (2.9 g, 0.012 mole) gave an oil which would not crystallize and which would not form a solid oxime.
b. Albright-Goldman Method. ${ }^{15}$-The diol 9 ($2.0 \mathrm{~g}, 0.008$ mole) was treated under these conditions to give an oil which would not erystallize but which did form an oxime, $\operatorname{mp} 105^{-110^{\circ}}$.
c. N-Bromoacetamide Method. ${ }^{16}$ - This method, utilizing the diol $9(1.7 \mathrm{~g}, 0.007$ mole), gave 0.50 g of starting niaterial and an oil. Chromatography of the oil on silica gel (Merck 0.0.)0.20 mm), eluting with petroleum ether-EtOAc $(4: 1)$, afforded $0.59 \mathrm{~g}(35 \%)$ of oil: ir (neat), $2.88,3.42,3.50,5.85,6.25,6.70$, $6.92,7.85,8.19,8.74,8.97,9.40,9.79,13.10,14.32 \mu$. The oxime 14 was prepared with $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$ and NaOAc in EtOH ; mp $105-110^{\circ}$.

3(e)-Amino-2(a)-phenyl-trans-2-decalol (3).-Compound 14 $(1.2 \mathrm{~g}, 0.0046 \mathrm{~mole})$ was hydrogenated at atmospheric pressulue
(14) K. E. Pfitzner and J. G. Moffatt, J. A m. Chem. Soc., 87, 5670 (1965).
(15) J. D. Albright and L. Goldman, ibid., 87,4214 (1965).
(16) E. P. Oliveto, H. L. Herzog, M. A. Jevnik, H. E. Jorgensen, and E, ['. Hershberg, ibid., 75، 3651 (1953).
in absolnte EtOH using W-s Raney nickel ${ }^{1 ;}$ catalyst. The catalyst was removed by filtration and the EtOH was evaporated at rediced pressire. The residue was recrystallized from petroleum ether $\left(60-70^{\circ}\right)$ affording $0.5 \mathrm{~g}(42 \%)$ of desired amino
 $6.25,6.35,6.70,6.92,7.40,9.85,10.66 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.70$ (mnltiplet, aromatic ortho protons), i. 34 (mnltiplet, aromatic meta and para protons), $3.00(W, / 2=19 \mathrm{cps}$, axial nethine proton at C-3). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}^{\circ} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2(a)-Phenyl-trans-decalin-2(e),3(e)-diol 3-Tosylate (12).-. To 9 ($1.05 \mathrm{~g}, 0.0043$ mole), dissolved in 20 ml of anhydions pyridine, was added p-tolnenesnlfonyl chloride ($2.0 \mathrm{~g}, 0.01$ nnole) and the solntion was allowed to stand at room temperature for 48 hr . $\mathrm{H}_{2} \mathrm{O}$ was added and the resulting oil was scratched with a glass rod to pronote crystallization. The solid was removed by filtration and recrystallized from petrolenm ether $\left(60-70^{\circ}\right)$ affording $1.0 \mathrm{~g}(58 \%)$ of tosylate $12: \mathrm{mp} 99-100^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right), 2.78,3.42$, $3 . \overline{0}(0,6.27,6.70,6.92,7.40,8.55 .9 .13,9.74,10.33,10.82,11.25$, 11.62. 11.93μ; nnn $\left(\mathrm{CCl}_{3}\right), \delta 7.2-8.0$ (multiplet, aromatic protoms), 4.80 (quartet, $/ m=11 \mathrm{cps}, J_{\mathrm{an}}=6 \mathrm{cps}$, axial methine proton at $(-3), 2.43$ (singlet, $\left.\mathrm{ArCH}_{3}\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{SO}_{4}\right) \mathrm{C}_{3} \mathrm{II}$.

3(a)-Amino-2(a)-phenyl-trans-2(e)-decalol (2).--Conipoind $12(1.0 \mathrm{~g}, 0.0025$ mole) was placed in a steel bomb and ihe bomb was cooled in Dry Ice-Me„CO. Tu the bomb was added ca.
(17) 11. R. Billica and H. Adkins in "Organic Syntheses," Coll. Vol. Ilr, E. C. Horning, Ed., John Wiley and Sons, Ine., New York, N. Y.. 1955, I 180.

100 ml of liquid NH_{3}. The bomb was sealed and heated at $\left.1: 1\right)^{2}$ for 24 hr . The pressure was released and the rosidne was dissolved in CHCl_{3}. The CHCl_{3} solntion was filtered and the solvent. was evaporated. The residne was recrystallized from petrolenm ether ($60-70^{\circ}$) affording $0.30 \mathrm{~g}\left(50 C_{c}\right)$ of annino alcohol 2: nu, $116-117^{\circ}$; ir (CHCh $\left.), 2.79,2.97,3.34,3.4^{\circ}, 3 . \bar{n} 1,6.2 .5,6.3\right)^{\circ}$ $6.71,6.92,7.40,9.85,10.01,10.28,10.67 \mu ;$ mur $(C)(1), \delta$ 〒. 4) (multiplet, aromatic protons), 3.83 ($W_{1 / 2}=6$ cps, equatorial methine proton at (-3). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3(e)-Amino-2(e)-phenyl-trans-2(a)-decalol (4).-. Componind 15 (1.0 g (0.004 nole) was disolved in 100 ml of absohte EtOH satirated with $\mathrm{NH}_{\text {a }}$ and naterial was hydrogenated moder $\quad 0$ $\mathrm{kg} / \mathrm{cm}^{2}$ of H_{2} nsing $\mathrm{W}-\overline{5}$ Raney Ni catalyst." ${ }^{\prime}$ The catalysu was removed by filtration and the solvent was evaporated at rednced pressure. The rosidne was chromatographed on silica gel Berck $0.05-0.20 \mathrm{~mm}$) eluting with cyclohexane-FitoAc ($1: 1$)
 ir $\left(\mathrm{CHCl}_{3}\right), 2.78,2.95,3.34,3.52,3.51,6.25,6.34,6.70,6.92,7.63$, $8.60,9.31,9.66,10.00,10.26 \mu ; 11 m r^{\prime}(\mathrm{Cl}) \mathrm{Cl}, \mathrm{CF} \mathrm{CO}_{2} \mathrm{Il}, \delta \mathbf{~} 7.40^{\prime}$

Acknowledgment. - The authors gratefully acknowledge support of this project by the National Institutes of Health Grant He-08555. The authors wish to express their appreciation to Drs. J. B. LaPidus and P. … Patil and Mr. S. Hetey for perforning the vas deferens assays.

Synthesis and Myotrophic-Androgenic Activity of Substituted $2 \alpha, 3 \alpha$-Methano-5 α-androstane Derivatives ${ }^{1}$

Manfred E. Wolff, Sheue-Yann Cheng, and Winston Ho
Depaitment of Pharmaceutical Chemistry, School of Pharmacy, Cnwersity of California, San Francisco, California 0.422

Received Febmary 1~, 1968

Abstract

The preparation and androgenic-nyyotrophic testing of analogs of 17 having substitnents on the cyclopropyl ring were undertaken in an effort to obtain information regarding the steric and electronic requirements in the A ring of anabolic-androgenic androstanes. Treatment of 17β-hydroxyandrost-2-ene acetate with ethyl diazoacetate in the presence of anhydrous CliSO_{4} gave $2 \alpha, 3 \alpha$ - $(\beta$-carbethoxymethano)-5 α-androstan- 17β-ol acetate which was converted to a variety of substituted cyclopropane derivatives. The most potent is the aldehyde 15 which is more active than testosterone propionate in the myotrophic test and is minch less androgenic.

Studies in this laboratory have resulted in the proposal ${ }^{2}$ that anabolic-androgenic androstanes are bound to their receptor by a β-face π-bond to an sp^{2} system in the A ring. The pronounced anabolicandrogenic activity of $2 \alpha, 3 \alpha$-methano- 5α-androstan17β-ol (17) ${ }^{2}$ was taken as evidence for this hypothesis. Recent work ${ }^{\text {3a }}$ on steroidal episulfides, bioisosteric with these methano steroids, has shown that the $2 \alpha, 3 \alpha$ isomers indeed have high parenteral activity, whereas the $2 \beta, 3 \beta$ isomers are essentially inactive. This is in harmony with our proposal. ${ }^{36}$ On the other hand, $2 \alpha, 3 \alpha$ - and $2 \beta, 3 \beta$-steroidal difluorocyclopropanes have similar activity. ${ }^{4}$

To gain further information in this area, the preparation of aualogs of $\mathbf{1 7}$ having altered electron
(1) (a) This investigation was supported in part by a Public Health Service researcl) grant (AM-05016) from the National Institute of Arthritis and Metaloolic Diseases, U. S. Public Health Service. (b) Portions of this work are taken from the Ph.D. thesis of S.+I. Cheng, University of California, San Francisco, 1966.
(2) M. E. Wolff, W. Ho, and R. Kwok, J. Med. Chem. 7, 57; (1964).
(3) (a) P. D. Klimstra, E. F. Nutting, and R. E. Counsell, ibid., 9, 693 (1966). (b) The Searle group did not interpret their data in this way.
(4) (a) I. 1l. Knox, E. Velarde, S. Berger, I), Cuadriello. P. W. landis, and . . 1). (russ, J. Ar, Chem. Soc., 85, 1851 (1963): (b) F. A. Kinel and 1R. 1:. Durfman, Sterilile, 3, 109 (1964).
density at the sp^{2} centers was undertaken. If a π bond is important, the strength of the binding would be different in such analogs. Since β-face binding is assumed to be involved, the preparation of substituted cyclopropane analogs of $\mathbf{1 7}$ should be feasible since the substituent groups should not interfere sterically with drug receptor binding.

The synthetic plan involved the preparation of $2 \alpha, 3 \alpha$-carbethoxymethano- 5α-androstan- 17β-ol acetate (7) as a common intermediate for the other derivatives. This material was prepared by the reaction of 17β-hydroxyandrost-2-ene acetate ${ }^{5}$ (2) with ethyl dazoacetate. Although carbene intermediates have been proposed in the reaction of diazo compounds with olefins. ${ }^{6}$ the reaction failed when the reagents were heated at $120-180^{\circ}$, or were irradiated in toluene or hexane solution with a medium-pressure mercury are. On the other hand, a 45% yield of 7 was realized when the reagents were heated in the presence of anhydrous CuSO_{4}. These results point to
(5) A. Bbwers, A. D. Cross, J. H. Enwards, H. Carpio, M. Calzada, and E. Denot, J. Med. Chem., 6, 156 (1963).
(6) J. Hine, "Divalent Carbon," The Ronald F'ress Co., New York, N. Y.. 1064, , 122.

[^0]: cal Suciety Wteting, lawrence, Lansas, Oct 27-28, 1966 .
 (2) Taken in part from tle dissertation presented loy W. H. Castruck, Fef, job7, to the Graduate Schuol of (he University of Kiansas in partial fulfillifert of the repuirements for the Doctor of Philosupliy Degret.

[^1]: (hern. 9, 4; (1966).

[^2]: melt and awe corrected. Ir data were recurted on a Beckman IR8 speclirophotometer, and ninr dasa on a Varial Associates Model A. 60 spectroplu* tometer (TMS). Mierommalses were candmeted by Midwest Microlab. luc., ludianapolis, lud., and on an F \& M Model 185, Cniversity of Kansas. Where analyse; are indicated only ly symbols of the elements, analytical rewndts uhtoincd for (bose eloments were withon $\pm 0.4 \%$ of the theoreticat values.

 (1950).

